Ghaffari, O., Behzadmehr, A. (2013). Investigation of the Effect of Nanoparticles Mean Diameter on Turbulent Mixed Convection of a Nanofluid in a Horizontal Curved tube Using a Two Phase Approach. Transp Phenom Nano Micro Scales, 1(1), 64-74. doi: 10.7508/tpnms.2013.01.007

O. Ghaffari; A. Behzadmehr. "Investigation of the Effect of Nanoparticles Mean Diameter on Turbulent Mixed Convection of a Nanofluid in a Horizontal Curved tube Using a Two Phase Approach". Transp Phenom Nano Micro Scales, 1, 1, 2013, 64-74. doi: 10.7508/tpnms.2013.01.007

Ghaffari, O., Behzadmehr, A. (2013). 'Investigation of the Effect of Nanoparticles Mean Diameter on Turbulent Mixed Convection of a Nanofluid in a Horizontal Curved tube Using a Two Phase Approach', Transp Phenom Nano Micro Scales, 1(1), pp. 64-74. doi: 10.7508/tpnms.2013.01.007

Ghaffari, O., Behzadmehr, A. Investigation of the Effect of Nanoparticles Mean Diameter on Turbulent Mixed Convection of a Nanofluid in a Horizontal Curved tube Using a Two Phase Approach. Transp Phenom Nano Micro Scales, 2013; 1(1): 64-74. doi: 10.7508/tpnms.2013.01.007

Investigation of the Effect of Nanoparticles Mean Diameter on Turbulent Mixed Convection of a Nanofluid in a Horizontal Curved tube Using a Two Phase Approach

^{}Mechanical Engineering Department, University of Sistan and Baluchestan, Zahedan, I.R. Iran

Abstract

Turbulent mixed convection of a nanofluid (water/Al2O3, Φ=.02) has been studied numerically. Two-phase mixture model has been used to investigate the effects of nanoparticles mean diameter on the flow parameters. Nanoparticles distribution at the tube cross section shows that the particles are uniformly dispersed. The non-uniformity of the particles distribution occurs in the case of large nanoparticles and/or high value of the Grashof numbers. The study of particle size effect showed that the effective Nusselt number and turbulent intensity increases with the decreased of particle size.

[1] S.U.S. Choi, Enhancing thermal conductivity offluid with nanoparticles, developments andapplications of non-Newtonian flow, ASME FED231/MD 66(1995) 99–105.

[2] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E.Lockwood, and E. A.Grulke, Anomalous thermalconductivity enhancement in nanotubesuspensionsAppl. Phys. Lett79,(2001) 2252 -2255

[3] H. Zhu, C. Zhang, S. Liu, Y. Tang, and Y. Yin,Effects of nanoparticle clustering and alignmenton thermal conductivities of Fe3O4 aqueousnanofluids.Appl. Phys.Lett. 89, (2006) 023123

[4] S. M. S. Murshed, K. C. Leong, and C. Yang,Investigations of thermal conductivity andviscosity of nanofluids Int. J. Therm.Sci. 47,(2008) 560-568

[5] C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi,Empirical correlation finding the role oftemperature and particle size for nanofluid (Al2O3)thermal conductivity enhancement, Appl. Phys.Lett. 87 (2005) 1–3.

[6] J. Koo and C. Kleinstreuer,A new thermalconductivity model for nanofluids,Journal ofNanoparticle Research 6 (2004),577–588

[7] N. Sohrabi, N. Masoumi, A. Behzadmehr, andS.M.H. Sarvari, A Simple Analytical Model forCalculating the Effective Thermal Conductivity ofNanofluids, Heat Transfer Asian Research, 39(2010) 141-150.

[8] K. Khanafer, K. Vafai, M. Lightstone, Buoyancydrivenheat transfer enhancement in a twodimensional enclosure utilizing nanofluids. Int. J.Heat Mass Transfer 46 (2003) 3639–3653.

[9] M. Akbari, A. Behzadmehr, Developing laminarmixed convection of a nanofluid in a horizontaltube with uniform heat flux. Int. J. Heat FluidFlow 29 (2007) 566–586.

[10] M.Izadi, A.Behzadmehr, D.Jalali-Vahida,Numerical study of developing laminar forcedconvection of a nanofluid in an annulus,Int.J.Thermal sciences 48 (2009)2119-2129.

[11] Y.M. Xuan , W. Roetzel, Conceptions for heattransfer correlation of nanofluids. Int. J. HeatMass Transfer 43 (2000) 3701–3707.

[12] A. Mokmeli, M. Saffar-Avval, Prediction ofnanofluid convective heat transfer using thedispersion model. Int. J. Therm. Sci. 49 (2010)471–478.

[13] S. Kumar, S. Kumar Prasad, J. Banerjee, Analysisof flow and thermal field in nanofluid using asingle phase thermal dispersion model. AppliedMathematical Modelling 34 (2010) 573–592.

[14] Y.M. Xuan, Q. Li, Investigation on convectiveheat transfer and flow features of nanofluids. J.Heat Transfer 125 (2003) 151–155.

[15] J.Bungirno, convective transport in nanofluid , J.of Heat Transfer 128 (2006),240-250

[16] A. Behzadmehr, M. Saffar-Avval, N. Galanis,Prediction of turbulent forced convection of ananofluid in a tube with uniform heat flux using atwo-phase approach. Int. J. Heat Fluid Flow 28(2007) 211–219.

[17] R. Lotfi, Y. Saboohi, A.M. Rashidi, Numericalstudy of forced convective heat transfer ofNanofluids: Comparison of different approaches.Int. Com. Heat Mass Transfer 37 (2010) 74–78.

[18] V. Bianco, O. Manca, S. Nardini, Numericalinvestigation on nanofluids turbulent convectionheat transfer inside a circular tube. Int. J. Thermal.Sci. 50(2011)341-349

[19] S.Kondaraju, E. K. Jin, and J. S. Lee.Investigation of heat transfer in turbulentnanofluids using direct numerical simulations,Physical Review E 81, (2010) 016304.

[20] Mirmasomi and behzadmehr, Effect ofnanoparticles mean diameter on laminar mixedconvection heat transfer of a nanofluid Int. J. ofHeat and Fluid Flow 29 (2008) 557–566.

[21] A. Akbarinia, R. Laur Investigating the diameterof solid particles effects on a laminar nanofluidflowin a curved tube using a two phase approach.Int.J.of Heat and Fluid Flow 30 (2009) 706–714

[22] S.Vashisth,V.Kumar,Kirishna D.P.Nigam.AReviewon potential applications of curvedgeometries in process industry .Ind. Eng .Chem.Res. 47 (2008), 3291-3337

[23] S.A.Berger, L.Talbot, SL.Yao, Flow in curvedpipes Annual Review of Fluid Mechanics15(1983) 461-512.

[24] RK.Shah, SD.Joshi. Convective heat transfer incurved ducts. Handbook of single phaseconvective heat transfer. New York: John Wileyand Sons (1987).

[25] GW .Hogg, The effect of secondary flow on pointheat transfer coefficients for turbulent flow insidecurved tubes. PhD Thesis, University ofIdaho(1968).

[26] SV.Patankar, VS. Pratap, DB.Spalding,Predictionof turbulent flow in curved pipes. J Fluid Mech57(1975)583-95.

[27] L. J. Li,C. X. Lin, M. A. Ebadian. Turbulentmixed convective heat transfer in the entranceregion of a curved pipe with uniform walltemperature.Int. Journal of Heat and MassTransfer 41(1998)3793-3805.

[28] O.Ghaffari, A.Behzadmehr, H.Ajam,. Turbulentmixed convection of a nanofluid in a Horizontalcurved tube using a two phase approach. Int.J.Com. Heat Mass Transfer37 (2010) 1551–1558

[29] M.Manninen,V.Taivassalo,S. Kallio,On theMixture Model for Multiphase Flow, VTTPublications 288(1996). Technical ResearchCenter of Finland.

[30] L.Schiller, A. Naumann, A drag coefficientcorrelation. Z. Ver. Deutsch. Ing. 77(1935), 318–320.

[31] D.Gidaspow, Multiphase Flow and Fluidization.Academic Press(1994).

[32] B.E.Launder,D.B.Spalding, Lectures inMathematical Models of Turbulence.AcademicPress(1972), London, England.

[33] N. Masoumi, N. Sohrabi, A. Behzadmehr, A newmodel for calculating the effective viscosity ofnanofluids, J. Phys. D Appl. Phys. 42 (2009)055501.

[34] H.Gao, L. Guo, X. Zhang. Liquid–solid separationphenomena of two-phase Turbulent flow in curvedpipes. Int.J. of Heat and Mass Transfer 45 (2002)4995–5005