Numerical Study of Mixed Convection of Nanofluid in a Concentric Annulus with Rotating Inner Cylinder

G. A. Sheikhzadeh 1, H. Teimouri 1,*, M. Mahmoodi 1, 2
1 Department of Mechanical Engineering, University of Kashan, Kashan, Iran
2 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

In this work, the steady and laminar mixed convection of nanofluid in horizontal concentric annulus with rotating inner cylinder is investigated numerically. The inner and outer cylinders are kept at constant temperature T_i and T_o respectively, where $T_i>T_o$. The annular space is filled with Alumina-water nanofluid. The governing equations with the corresponded boundary conditions in the polar coordinate are discretized using the finite volume method where pressure-velocity coupling is done by the SIMPLER algorithm. Numerical results have been obtained for Rayleigh number ranging from 10^2 to 10^5, Reynolds number from 1 to 300 and nanoparticles volume fraction from 0.01 to 0.06. The effects of the Reynolds and Rayleigh numbers, average diameter of nanoparticles and the volume fraction of the nanoparticles on the fluid flow and heat transfer inside the annuli are investigated. According to the results, the average Nusselt number decreases with increasing the Reynolds number. However, the average Nusselt number increases by increasing the Rayleigh number. Moreover, the maximum average Nusselt number occurs for an optimal nanoparticle volume fraction except situations that heat conduction predominates over the heat convection. In these conditions the average Nusselt number is close to unity.

Keywords: Concentric Annulus; Mixed Convection; Nanofluid; Finite Volume Method; Rotating Inner Cylinder

1. Introduction

The problem of mixed convection in annulus between two rotating cylinders is noteworthy because of its wide applications. Some applications are methods for improvement of crystal formation in technological applications [1,2] food processing [3, 4], and journal bearing. The increase of generation of heat in industrial devices with decrease of their size increases need for higher heat transfer rate in minimum space. In spite of all of the advances in enhancement of heat transfer, the low thermal conductivity of the traditional coolants is a great limitation in this way. One of the methods for increase the heat transfer is use of nanoparticles in the base fluid. The existence of the nanoparticles increases the viscosity which is an undesirable effect and reduces the rate of heat transfer. Based on these effects of nanoparticles, they can reduces or increases the rate of heat transfer based on the geometry and boundary conditions of the problem, type, size, shape, and volume fraction of the nanoparticles. Therefore when the nanofluid is used its effect on heat transfer must be investigated firstly.

In continue some of works done on mixed convection in annuluses with rotating inner cylinder...
are reviewed. These works have been done for rotating Reynolds number lower than 2000 which the flow becomes two dimensional and laminar. As early as 1992, Lee [5] studied numerically laminar natural convection of air in eccentric annulus with rotating inner cylinders. He observed that in a constant Rayleigh number the average Nusselt number decreases with increase in rotation velocity of inner cylinder. Natural convection of nanofluids in a concentric annulus was firstly studied numerically by Abu-Nada et al. [6]. They used Brinkman [7] and Hamilton-Crosser [8] models for viscosity and thermal conductivity of the nanofluid, respectively. They observed enhanced heat transfer using nanofluid at low Rayleigh numbers. Abu-Nada [9,10] investigated effects of different viscosity and thermal conductivity models for nanofluid on natural convection in concentric annuluses. Izadi et al. [11] conducted a numerical study on developing laminar forced convection of Al$_2$O$_3$-water nanofluid in an annulus. They used Masoumi et al. [12] and Chon et al. [13] correlations for prediction of viscosity and thermal conductivity of the nanofluid, respectively.

Their results showed that, in general, convective heat transfer coefficient increases with nanoparticle concentration.

Base on the knowledge of the authors effect of nanoparticles on flow pattern and mixed convection in annulus between two concentric cylinders with rotating inner cylinder has not been investigated in literature. In the present work this problem is investigated.

2. Problem definition

Figure 1 shows the geometry of present problem. Inner cylinder with radius of r_i and the outer cylinder with radius of r_o are kept at temperatures of T_i and T_o, respectively. The inner warmer cylinder rotates with the angular velocity of ω in counterclockwise direction. The annulus has infinite length. The annulus is filled with Al$_2$O$_3$-water nanofluid. According to ref. [14] for the Reynolds number lower than 2000 that the Taylor vortices are not formed the flow is two dimensional. In the present problem the natural convection is due to the temperature difference and gravity, while the forced convection is due to the rotation of inner cylinder. In the present work the effects of nanoparticles with different average diameters and volume fraction on the flow pattern and heat transfer are investigated. Also the effects of boundary conditions such as angular velocity of inner cylinder (Reynolds number) and temperature difference of two cylinders (Rayleigh number) are considered.
conditions

Fig. 1. Geometry of the problem and the boundary conditions

3. Mathematical modeling

The thermophysical properties of the nanofluid are considered to be constant with the exception of density in the buoyancy term in the momentum equation which varies according to the Boussinesq approximation. The nanoparticles are assumed to be uniform in shape and size. Moreover, the base fluid and the nanoparticles are assumed to be in thermal equilibrium. There is not any slip between the water and the nanoparticles. With the assumption of Newtonian fluid, steady state and incompressible flow, the governing equations in polar system coordinates are as follows:

Continuity:
\[\frac{\partial v}{\partial r} + \frac{v}{r} + \frac{1}{r} \frac{\partial u}{\partial \theta} = 0 \]

Momentum equation in \(r \) direction:
\[\rho_{nf} \left(\frac{\partial v}{\partial r} + \frac{u \partial v}{r \partial \theta} + \frac{v^2}{r} \right) = -\frac{\partial p}{\partial r} + \frac{\mu_{nf}}{r^2} \left(\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} - \frac{v}{r^2} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} \right) \]

Energy equation:
\[v \frac{\partial T}{\partial r} + u \frac{\partial T}{\partial \theta} = \alpha_{nf} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} \right) \]

Where \(u \) and \(v \) are velocity components in radial and tangential direction, \(g \) is gravitational acceleration, \(\mu \), \(\rho \), \(\beta \), and \(\alpha \) are viscosity, density, thermal expansion coefficient and thermal diffusivity coefficient, respectively. \(f_r \) and \(f_{\theta} \) are components of volumetric forces in radial and tangential directions as follows:
\[f_r = (\rho \beta)_{nf} g (T - T_o) \cos \theta \]
\[f_{\theta} = - (\rho \beta)_{nf} g (T - T_o) \sin \theta \]

The boundary conditions are:
\[v = 0, \quad u = r_i \omega, \quad T = T_i \text{ at } r = r_i \]
\[v = 0, \quad u = 0, \quad T = T_o \text{ at } r = r_o \]

The following dimensionless parameters are considered in the problem [15, 16]:
\[R = \frac{r}{l}, \quad \theta = \frac{T - T_o}{T_i - T_o}, \quad V = \frac{v}{r_i \omega} \]
\[U = \frac{u}{r_i \omega}, \quad P = \frac{p}{\rho r_i^2 \omega^2} \]
\[\psi = \frac{\psi}{r_i \omega}, \quad E = \frac{e}{l} \]

where \(l \) is radius differences of inner and outer cylinders and is equal to \((r_o - r_i) \). With the above parameters the governing equations are converted in non-dimensional form:

Continuity:
\[\frac{\partial V}{\partial R} + \frac{V}{R} + \frac{1}{R} \frac{\partial U}{\partial \theta} = 0 \]

28
Momentum equation in \(r \) direction:

\[
V \frac{\partial V}{\partial R} + \frac{U}{R} \frac{\partial V}{\partial \theta} - \frac{U^2}{R} = -\frac{\rho_f}{\rho_n} \frac{\partial P}{\partial R} + \frac{1}{R^2} \left[\frac{\partial^2 V}{\partial R^2} + \frac{1}{R} \frac{\partial V}{\partial R} - \frac{V}{R^2} \right] + \frac{\nu_f}{\nu} \frac{1}{Re} \left(\frac{\partial^2 V}{\partial R^2} + \frac{1}{R} \frac{\partial V}{\partial R} - \frac{V}{R^2} \right) + \frac{1}{R^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{2}{R^2} \frac{\partial U}{\partial \theta} \frac{\beta_n}{\beta_f} \frac{P}{R \Re^2} \theta \cos \theta \tag{10}
\]

Momentum equation in \(\theta \) direction:

\[
V \frac{\partial U}{\partial R} + \frac{U}{R} \frac{\partial U}{\partial \theta} + UV = -\frac{\rho_f}{\rho_n} \frac{1}{R} \frac{\partial P}{\partial \theta} + \frac{1}{R^2} \left[\frac{\partial^2 U}{\partial R^2} + \frac{1}{R} \frac{\partial U}{\partial R} - \frac{U}{R^2} \right] + \frac{\nu_f}{\nu} \frac{1}{Re} \left(\frac{\partial^2 U}{\partial R^2} + \frac{1}{R} \frac{\partial U}{\partial R} - \frac{U}{R^2} \right) + \frac{1}{R^2} \frac{\partial^2 U}{\partial \theta^2} + \frac{2}{R^2} \frac{\partial V}{\partial \theta} \frac{\beta_n}{\beta_f} \frac{P}{R \Re^2} \theta \sin \theta \tag{11}
\]

Energy equation:

\[
V \frac{\partial \theta}{\partial R} + \frac{U}{R} \frac{\partial \theta}{\partial \theta} = \frac{\alpha_n}{\alpha} \frac{1}{RePr} \left(\frac{\partial^2 \theta}{\partial R^2} + \frac{1}{R} \frac{\partial \theta}{\partial R} + \frac{1}{R^2} \frac{\partial^2 \theta}{\partial \theta^2} \right) \tag{12}
\]

where \(Ra, Pr, \) and \(Re \) are Rayleigh, Prandtl, and Reynolds number and are defined as follows:

\[
Ra = \frac{g \beta_f (T_i - T_o) l^3}{\alpha_f v_f}, \quad Pr = \frac{\nu_f}{\alpha_f}, \quad Re = \frac{r_i \omega l}{v_f}
\tag{13}
\]

Also the boundary conditions in dimensionless form are:

\[
V = 0, \quad U = 1, \quad \theta = 1 \text{ at } R = R_i \\
V = 0, \quad U = 0, \quad \theta = 0 \text{ at } R = R_o \tag{14}
\]

The density, heat capacity, and thermal expansion coefficient of the nanofluid are:

\[
\rho_{eff} = (1 - \varphi_p) \rho_f + \varphi_p \rho_p \tag{15}
\]

\[
c_{eff} = \frac{(1 - \varphi_p) c_f + \varphi_p \varphi_p c_p}{\rho_{eff}} \tag{16}
\]

\[
\beta_{eff} = \frac{(1 - \varphi_p) (\rho \beta)_f + \varphi_p (\rho \beta)_p}{\rho_{eff}} \tag{17}
\]

Viscosity and thermal conductivity of nanofluid is calculated with the assumption of thermal equilibrium between base fluid and nanoparticles and uniform shape of the nanoparticles. The viscosity of \(Al_2O_3 \)-water nanofluid with average diameters of 13, 28, and 36 nm is calculated by [17-19]:

\[
\mu_{eff} = (1 + 39.11 \varphi_p + 533.9 \varphi_p^2) \mu_f \tag{18}
\]

\[
d_p = 13 \text{ nm.} \tag{19}
\]

\[
\mu_{eff} = (1 + 7.9 \varphi_p + 123 \varphi_p^2) \mu_f \tag{20}
\]

\[
d_p = 28 \text{ nm.} \tag{21}
\]

\[
\mu_{eff} = (1 + 0.25 \varphi_p + 0.015 \varphi_p^2) \mu_f \tag{22}
\]

\[
d_p = 36 \text{ nm.} \tag{23}
\]

In (20) \(\varphi_p \) is in percentage. Thermal conductivity of \(Al_2O_3 \)-water nanofluid is calculated according to the model proposed by Khanafar and Vafai [20]:

\[
\left(\frac{k_{eff}}{k_f} \right)_{Al_2O_3} = 0.9843 + 0.398 \varphi_p^{0.7383} \left(\frac{1}{d_p (nm)} \right)^{0.2246} \left(\frac{\mu_{eff}(T)}{\mu_f(T)} \right)^{0.0235} - 3.9517 \frac{\varphi_p}{T} + 34.034 \frac{\varphi_p^2}{T^3} + 32.509 \frac{\varphi_p}{T^2}
\tag{24}
\]

\[0 \leq \varphi_p \leq 10\%;
11 \text{ nm} \leq d \leq 150 \text{ nm};
20 \text{°C} \leq T \leq 70 \text{°C}
\]

Where \(\varphi_p \) is in percentage, \(T \) is in Celsius, and \(d_p \) is in nm. The viscosity of water in different temperatures is obtained by:

\[
\mu_f(T) = 2.414 \times 10^{-5} \times T^{247.8/(T-140)}
\tag{22}
\]

Where \(T \) is in Kelvin. The thermophysical properties of water and \(Al_2O_3 \) at 293 K are presented in Table 1.
Table 1
Thermophysical properties of water and Al₂O₃

<table>
<thead>
<tr>
<th></th>
<th>β×10⁻⁵</th>
<th>k</th>
<th>cₚ</th>
<th>ρ</th>
<th>T</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1/K)</td>
<td>(W/m K)</td>
<td>(J/kg K)</td>
<td>(kg/m³)</td>
<td>(K)</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>21</td>
<td>0.59</td>
<td>4182</td>
<td>998.2</td>
<td>293</td>
<td>7.07</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>25</td>
<td>0.85</td>
<td>765</td>
<td>3970</td>
<td>293</td>
<td>–</td>
</tr>
</tbody>
</table>

The local Nusselt numbers on the inner and outer cylinders are calculated by the following equations [15, 22, 23]:

\[Nu_i = -r_i \ln \left(\frac{r_o}{r_i} \right) \left(\frac{k_{nf}}{k_f} \right) \left(\frac{1}{T_i - T_o} \right) \frac{\partial T}{\partial r} \bigg|_{r=r_i} \] \tag{23}

\[Nu_o = -r_o \ln \left(\frac{r_o}{r_i} \right) \left(\frac{k_{nf}}{k_f} \right) \left(\frac{1}{T_i - T_o} \right) \frac{\partial T}{\partial r} \bigg|_{r=r_o} \] \tag{24}

The average Nusselt number on the inner cylinder is calculated by:

\[\overline{Nu_i} = \frac{1}{2\pi} \int_0^{2\pi} Nu_i(\theta) d\theta \] \tag{25}

Also the Nusselt number based on the dimensionless parameters is:

\[Nu_i = -R_i \ln \left(\frac{R_o}{R_i} \right) \left(\frac{k_{nf}}{k_f} \right) \frac{\partial \theta}{\partial r} \bigg|_{R=R_i} \] \tag{26}

The streamfunction in polar coordinates is as follows:

\[v = \frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad u = -\frac{\partial \psi}{\partial r} \] \tag{27}

4. Numerical implementation

The governing equations with the respective boundary conditions are discretized using the finite volume method. As shown in Fig. 2 a non-uniform grid is generated, then the governing equations are discretized on the grid points. The diffusion terms are discretized using a central difference scheme, while a hybrid scheme, which is a combination of central difference and upwind schemes, is used to discretize the convective terms. The velocity and pressure fields are coupled according to the SIMPLER algorithm based on a staggered grid. The set of algebraic equations are solved iteratively using TDMA method.

Different grid sizes are examined to ensure grid independence results. The tested grids and the obtained average Nusselt numbers are shown in Table 2. The results are obtained for air with \(Pr = 0.7, Re = 257 \) and \(Ra = 10^5 \). The outer cylinder to inner cylinder diameter ratio is 2.6. Figure 3 shows variation of tangential velocity at \(\theta = 90 \) for different grid sizes. According to the Fig. 3 and Table 2, an 81×41 grid is sufficiently fine. It should be noted that 81 points are in tangential direction while 41 grid points are in radial direction.

Table 2
average Nusselt number for different grid sizes

<table>
<thead>
<tr>
<th>Grid size</th>
<th>(Nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101×51</td>
<td>3.518</td>
</tr>
<tr>
<td>81×41</td>
<td>3.514</td>
</tr>
<tr>
<td>61×31</td>
<td>3.505</td>
</tr>
<tr>
<td>41×21</td>
<td>3.487</td>
</tr>
</tbody>
</table>

Fig. 2. Non-uniform grid for the computational domain

Fig. 3. Variation of tangential velocity at \(\theta = 90 \) for different grid sizes
For validation of the results, the obtained results in the present study are compared with results of other researchers. At the first step natural convection of air in a cylindrical annulus with constant temperature walls at $Ra = 5 \times 10^4$ and diameter ratio of 2.6 is considered. The obtained results are compared with those of Kuehn and Goldstein [22] in Figs. 4 and 5.

Another test case is mixed convection in concentric annulus with rotating inner cylinder. The results are compared with those of Char and Hsu [16] and Lee [5] in Figs. 6 and 7. In Fig. 6 the Pr, Ra, and Re are 0.7, 10^5 and 119, respectively. In Fig. 7 the Pr and Ra are 0.7 and 10^5 respectively. As can be seen in the figures a good agreement exists between the results. The minor difference is due to difference in used numerical techniques and accuracy of discretization.

5. Results and discussions

5.1. Effect of Reynolds number on flow pattern and temperature distribution

In this section effect of Reynolds number on fluid flow and heat transfer of Al_2O_3-water nanofluid in the annulus is considered. The diameter ratio of annulus is 2.6, the Rayleigh number is 10^4, the average temperature of the walls is 293 K and the volume fraction of the nanoparticles is varying from 0 to 0.06. The results are obtained for $Re = 1, 25, 100, \text{and} 300$. Therefore the Richardson number which evaluate the
strength of natural convection compared to the forced
convection is \(Ri = 1414.42, 2.26, 0.14, \) and \(0.016. \)

\[\text{Streamlines} \quad \text{Isotherms} \]

\[\text{Re} = 1 \]

\[\text{Re} = 25 \]

\[\text{Re} = 100 \]

\[\text{Re} = 300 \]

Fig. 8. Streamlines and isotherms at \(Ra = 104 \) and different
Reynolds numbers for nanofluid with \(\phi_p = 0.06 \) (solid line)
and pure fluid (dashed line)

Figure 8 shows the streamlines and isotherms for
nanofluid and base fluid. As can be seen from the
streamlines at \(Re = 1 \) the rotation of the inner cylinder
has a minor effect and two vortices are formed in side
of the inner cylinder. These vortices are
approximately symmetric. The fluid is heated at the
vicinity of the inner cylinder and moves upward. Then

blocked by the upper region of the outer cylinder and
is cooled when moves downward along it. At this
conditions the Richardson number is equal to 1414.14
and the natural convection is dominated the heat
transfer. Also it is observed from Table 3 that the
maximum value of stream function decreases with
increase in \(\phi_p. \)

Table 3

<table>
<thead>
<tr>
<th>Re</th>
<th>(\phi = 0.06)</th>
<th></th>
<th>(\phi = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\psi_{\max})</td>
<td>(\psi_{\min})</td>
<td>(\psi_{\max})</td>
</tr>
<tr>
<td>1</td>
<td>1.414</td>
<td>-1.115</td>
<td>1.891</td>
</tr>
<tr>
<td>25</td>
<td>0.266</td>
<td>0</td>
<td>0.226</td>
</tr>
<tr>
<td>100</td>
<td>0.340</td>
<td>0</td>
<td>0.343</td>
</tr>
<tr>
<td>300</td>
<td>0.328</td>
<td>0</td>
<td>0.359</td>
</tr>
</tbody>
</table>

With increase in the Reynolds number the right
and left hand side vortices increases and decreases in
size, respectively. Also the isotherms are condensed at
the vicinity of the inner cylinder. The thermal plume
is shifted to the left in the direction of rotation of the
cylinder. With further increase in the Reynolds
number the weak vortex formed by natural convection
effect disappears. At \(Re = 100 \) and 300 the heat
transfer occurs mainly through conduction and the
average Nusselt number is close to unity and therefore
the Nusselt number increases by increase in \(\phi_p. \) In
contrast with \(Re = 100 \) that for \(\phi_p = 0.06 \) the
streamfunction has a little increase compared to the
base fluid, at \(Re = 300 \) for \(\phi_p = 0.06 \) stream function
decreases compared to the base fluid.

The local Nusselt numbers along the inner and
outer cylinders at different Reynolds numbers are
presented in Fig. 9 and Fig. 10, respectively. At \(Re = 1\) the Nusselt number is approximately symmetric.
Minimum heat transfer on the inner cylinder occurs on
the location of separation of the plume, while its
maximum value is on the lower portion of the
cylinder. A reverse Nusselt number distribution is
observed along the outer cylinder. With increase in \(Re\)
minimum value of Nusselt number shifts the left side
and variation of the Nusselt number decreases. At \(Re = 100 \) and 300 that heat transfer occurs mainly
through conduction the Nusselt number is close to
unity.
Figure 11 shows variations of average Nusselt number with volume fraction of the nanoparticles at different Reynolds numbers. It is observed that by increase in Reynolds number the Nusselt number decreases and reaches to unity. This behaviour is according to the results of ref. [16]. At Re = 1 and 25 with increase in φ_p from 0 to 0.01 the Nusselt number increases while with further increase in φ_p it decreases. At Re = 100 and 300 with increase in φ_p the Nusselt number show an increasing trend.

5.2. Effect of Rayleigh number on fluid flow and heat transfer in the annulus

In this section effects of variation of Rayleigh number on fluid flow and heat transfer in the concentric annulus are investigated. The results are obtained for diameter ratio of 2.6, Re = 25 and average temperature of 293 K. the Rayleigh number is varying from 10^2 to 10^5.

The streamlines and isotherms are shown in Fig. 12. As can be seen from the figure at $Ra = 10^2$ and 10^3 there is no vortices in the annulus. At these Rayleigh number the heat transfer occurs through conduction and therefore the increase in φ_p motivates the Nusselt number to increases. At $Ra = 10^4$ a thermal plume is formed. By increase in Rayleigh number the plume moves to the upper region of the outer cylinder and the strength of the vortices increases. At $Ra = 10^5$ the isotherms are condensed which is characteristics of temperature gradient and motivates the Nusselt number to increase. At this Rayleigh number the existence of the nanoparticles reduces the strength of the vortices.

In Fig. 13 the average Nusselt numbers versus the volume fraction of the nanoparticles are illustrated. At $Ra = 10^2$ and 10^3, which is conduction dominated regime, the Nusselt number is close to unity. At these Rayleigh numbers with increase in φ_p an increasing trend in Nusselt number is observed. At $Ra = 10^4$ a significant increase in Nusselt number in comparison with lower Rayleigh numbers is observed. It is because of formation of thermal plume at this Rayleigh number. At $Ra = 10^4$ and 10^5 the Nusselt number increases with increase in φ_p from 0 to 0.01. Further increase in φ_p motivates the Nusselt number to decrease.
5.3. Effect of average diameter of nanoparticles on the average Nusselt number:

The average diameter of the nanoparticles due to their effect on effective viscosity and thermal conductivity of the nanofluid has a great effect on average Nusselt number. Figure 14 depicted average Nusselt number versus volume fraction of the nanoparticles for different values of nanoparticles diameter at $Re = 25$ and $Ra = 10^4$.

As can be seen from the figure the average Nusselt number increases with increase in nanoparticles diameter. For $d_p = 13$ nm the increase in φ_p, motivates the Nusselt number to decreases. The nanofluid with $d_p = 36$ nm has the highest effect on heat transfer enhancement.

6. Conclusion

Mixed convection of Al_2O_3-water nanofluid in a concentric cylindrical annulus with rotating inner cylinder was investigated numerically. Effects of some pertinent parameters such as Reynolds number, Rayleigh number, volume fraction of the nanoparticles, and average diameter of the nanoparticles on fluid flow and heat transfer were considered. The main findings of the paper are stated below:
1- The increase in Reynolds number reduces the Nusselt number. At high Reynolds numbers and low Richardson numbers the heat transfer occurs mainly through conduction and the Nusselt number closes to unity.

2- At all Rayleigh numbers with increase in Reynolds number the local Nusselt number decreases and closes to unity.

3- At low Reynolds number and high Richardson numbers, which is a convection dominated regime, with increase in volume fraction of the nanoparticles the Nusselt number firstly increases and then decreases. Therefore an optimum value of φ_p exists in which maximum heat transfer occurs. At high Reynolds numbers and low Richardson numbers (conduction dominated regime) with increase in volume fraction of the nanoparticles the Nusselt number increases.

References
