Effects of different atomistic water models on the velocity profile and density number of Poiseuille flow in a nano-channel: Molecular Dynamic Simulation

Document Type: Original Research Paper


Department of Maritime Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, No 424, P.O. Box 15875-4413, Tehran, I. R. Iran


In the current study, five different atomistic water models (AWMs) are implemented, In order to investigate the impact
of AWMs treatment on the water velocity profile and density number. For this purpose, Molecular dynamics simulation (MDS) of Poiseuille flow in a nano-channel is conducted. Considered AWMs are SPC/E, TIP3P, TIP4P, TIP4PFQ and TIP5P. To assessment of the ability of each model in prediction of velocity profile, it is compared with analytic velocity profile. Furthermore, MDS results of density number are evaluated by real non-dimensional value for density number of water (Rho*). Based on computational results,predicted velocity profile from MDS is in appropriate accordance to analytic solution based on the Navier–Stokes equations. In addition, SPC/E and TIP4P models prepare the best prediction of the velocity profile, and are recommended where the averaged magnitude of velocity across the nano-channel is essential. Furthermore, a jump in velocity of TIP5P and TIP4P models is revealed in the vicinity of the nano-channel walls. However, approximately similar quantity is detected in the flow velocity of all different AWMs near the nano-channel walls. Finally, numerical results related to density number show, the TIP5P water model has higher compliance with the intended Rho*, and thus this model is suggested, where density number plays an important role in our MDS.


[1] B. Lee, Y. Baek, M. Lee, D. H. Jeong, H .H. Lee, J.Yoon, Y .H. Kim: A carbon nanotube wall membrane for water treatment, Nature Communications 6 (2015).
[2] R. Das, M.d. E. Ali, S. B. A. Hamid, S.Ramakrishna, Z. Z. Chowdhury : Carbon nanotube membranes for water purification: A bright future in water desalination, Desalination 36 (2014) 97–109.
[3] R. Saidur, K.Y. Leong, H.A. Mohammad : A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews 15(2011) 1646–1668.
[4] A. C. Fischer, F. Forsberg, M. Lapisa, S .J. Bleiker,G. S.N. Roxhed, F. Niklaus: Integrating MEMS and ICs, Microsystems & Nanoengineering (2015).
[5] S. Yongli, S. Minhua, C.Weidong, M. Congxiao, L. Fang: The examination of water potentials by simulating viscosity, Computational Materials Science 38 (2007) 737–740.
[6] Y. Song, L. Dai: The shear viscosities of common water models by non-equilibrium molecular dynamics simulations, Molecular Simulation 36 (2010) 560-567.
[7] M. Gonzàlez, J. Abascal: The shear viscosity of rigid water models, J. Chemical Physics 132 (2010)096101.
[8] A. P. Markesteijn, R. Hartkamp, S. Luding, J.Westerweel : A comparison of the value of viscosity for several water models using Poiseuille flow in anano-channel , J. Chemical Physics 136 (2012)134104.
[9] G. Guevara-Carrion, J. Vrabec, H. Hasse: Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation, J. Chemical Physics 134 (2011) 074508.
[10] D. T. W. Lin, C. K. Chen: A molecular dynamics simulation of TIP4P and Lennard-Jones water in nanochannel, Acta Mechanica 173 (2004) 181–194.
[11] B. Plankova´,V. Vins, J. Hruby, M. Duska, T.Nemec, D. Celny: Molecular simulation of water vapor–liquid phase interfaces using TIP4P/2005 model,EPJ Web of Conferences 92 (2015).
[12] R. d. C. Barbosa, M. C. Barbosa: Hydration shell of the TS-Kappa protein: higher density than bulk water, Physica A: Statistical Mechanics and its Applications 439 ( 2015) 48–58.
[13] J.S. Hansen and J. T. Ottesen, Molecular dynamics simulations of oscillatory flows in microfluidic channels, J. of Micro Fluidic and Nano Fluidic 2 (2006) 301-307.
[14] D. C. Rapaport: The art of molecular dynamics simulation, Cambridge, New York (2004).
[15] G. Karniadakis, A. Beskok, Narayan Aluru:Microflows and nanoflows fundamentals and simulation, Springer, New York (2005).
[16] http://www1.lsbu.ac.uk/water/water_models.html.
[17] H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma:The missing term in effective pair potentials, J. Physical Chemistery 91 (1987) 6269-6271.
[18] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R.W. Impey, M. L. Klein: Comparison of simple potential functions for simulating liquid water, J.Chemical Physics 79 (1983) 926-935.
[19] W. L. Jorgensen, J. D. Madura: Temperature and size dependence for monte carlo simulations of TIP4P water, Mol. Phys 56 (1985) 1381-1392.
[20] M. W. Mahoney, W. L. Jorgensen: A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions,J. Chemical Physics 112 (2000) 8910-8922.
[21] S. W. Rick: Simulation of ice and liquid water over a range of temperatures using the fluctuating charge model, J. Chemical Physics 114 (2001) 2276-2283.
[22] M .Allen, D. Tildesley: Computer simulation of liquids, Oxford University Press (1987).
[23] P.A. Thompson, S.M. Troian: A general boundary condition for liquid flow at solid surfaces, Nature 389 (1997) 360–2.
[24] G. B. Macpherson, M. K. Borg, J .M. Reese:Generation of initial molecular dynamics configurations in arbitrary geometries and in parallel, Mol. Simul 33 (2007) 1199–1212.
[25] G.B. Macpherson, J. M. Reese: Molecular dynamics in arbitrary geometries: parallel evaluation of pair forces, Mol Simul 34 (2008) 97–115.
[26] G .B. Macpherson, N Nordin, H. G. Weller: Particle tracking in unstructured, arbitrary polyhedral meshesmfor use in CFD and molecular dynamics, Commun.Numer. Methods Eng 25 (2009) 263–273.
[27] M.K. Borg, G.B. Macpherson, J.M. Reese:Controllers for imposing continuum-to molecular boundary conditions in arbitrary fluid flow geometries, Mol Simul 36 (2010) 745–57.
[28] H. J. C. Berendsen, J. R. Grigera, T .P. Straatsma :The missing term in effective pair potentials, J.Physical Chemistry 91(1987) 6269-6271.
[29] R. Kamali, P. Radmehr, A. Binesh: Molecular dynamics simulation of electro-osmotic flow in a nanonozzle, Micro & Nano Letters 7 (2012) 1049–1052.
[30] J .P. Hansen, I. R. McDonald: Theory of simple liquids, Academic Press (2006).
[31] W. A. Khan, M. M. Yovanovich: Analytical Modeling of Fluid Flow And Heat Transfer In Micro/Nano-Channel Heat Sinks: Proceedings of IPACK2007, ASME Interpack ’07, Vancouver,British Columbia, CANADA (2007).
[32] A. S. Ziarani, A. A. Mohamad: A molecular dynamics study of perturbed Poiseuille flow in a nanochannel, Microfluid Nanofluid 2 (2005) 12–20.
[33] R. B. Bird, W. E. Stewart, E. W. Lightfoot: Transport phenomena, Wiley, New York (1960).
[34] D.Y.C. Chan, R.G Horn: The drainage of thin liquid films between solid surfaces, J. Chemical Physics 83(1985) 5311-5324.