The effect of small scale on the vibrational response of nano-column based on differential quadrature method

Document Type: Original Research Paper

Authors

1 Young Researchers and Elite club, Islamic Azad University, Central Tehran Branch, Tehran, I. R. Iran

2 Faculty of Mechanical Engineering, University of Kashan, Kashan, I. R. Iran

3 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, I. R. Iran

4 Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, I. R. Iran

Abstract

The present paper deals with the dynamic behavior of nano-column subjected to follower force using the nonlocal elasticity theory. The nonlocal elasticity theory is used to analyze the mechanical behavior of nanoscale materials. The used method of solution is the Differential Quadrature Method (DQM). It is shown that the nonlocal effect plays an important role in the vibrational behavior of nano-columns. The results can provide useful guidance for the study and design of the next generation of nanodevices and could be useful in biomedical and bioengineering applications as well as in other fields related with the nanotechnology.

Keywords


[1]   AC . Eringen: Linear theory of nonlocal elasticity and dispersion of plane-waves, International Journal of Engineering Science 10 (1972) 233–48.

[2]   S. Iijima: Helical microtubules of graphitic carbon, Nature 354 (1991) 56–8.

[3]   CR. Martin: Membrane-based synthesis of nanomaterials, Chemical Mater 8 (1996) 1739–46.

[4]   KE. Drexler: Nanosystems: molecular machinery, manufacturing and computation, New York: Wiley (1992).

[5]   J. Han, A. Globus, R. Jaffe , G. Deardorff : Molecular dynamics simulation of carbon nanotubebased gear, Nanotechnology 8 (1997) 95–102.

[6]   A. Fennimore , TD. Yuzvinsky, WQ. Han, MS. Fuhrer, J. Cumings, A. Zettl: Rotational actuators based on carbon nanotubes, Nature (2003) 408–24.

[7]   B. Bourlon, DC. Glattli, C. Miko, L. Forro, A. Bachtold: Carbon nanotube based bearing for rotational motions, Nano Letter 4 (2004) 709–12.

[8]   V. Saji, H. Choe, K. Young: Nanotechnology in biomedical applications-a review, International Journal of Nano Biomater 3 (2010) 119–39.

[9]   AC. Eringen: On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves, Journal of Apply Physics 54 (1983) 4703–10.

[10]    AC. Eringen: Nonlocal polar elastic continua, International Journal of Engineering Science 10 (1972) 1–16.

[11]    J. Peddieson, GR. Buchanan , RP. McNitt: Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science 41 (2003) 305–12.

[12]    JN. Reddy: Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science 45 (2007) 288–307.

[13]    J. Loya, J. Lopez-Puente, R. Zaera, J. Fernandez-Saez: Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model, Journal of Apply Physics 105 (2009) 044309.

[14]    K. Kiani: Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique, Physica E 43 (2010) 387–97.

[15]    T. Murmu, S. Adhikari: Non local effects in the longitudinal vibration of doublenanorod systems, Physica E 43 (2010) 415–22.

[16]    L.L. Ke, Y.S. Wang, Z.D. Wang: Non-local elastic plate theories, Proceedings of the Royal Society of London A 463 (2008) 3225–40.

[17]    T. Murmu, SC. Pradhan: Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model, Physica E 41 (2009) 1628–33.

[18]    R. Ansari, A. Shahabodini, H. Rouhi: A thickness-independent nonlocal shell model for describing the stability behavior of carbon nanotubes under compression, Composite Structures 100 (2013) 323–31.

[19]    HT. Thai: A nonlocal beam theory for bending, buckling, and vibration of nanobeams, International Journal of Engineering Science 52 (2012) 56–64

[20]    JN. Reddy, SD. Pang: Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J Appl Phys 103 (2008) 1–16.

[21]    M.A. De Rosa, N.M. Auciello, M. Lippiello: Dynamic stability analysis and DQM for beams with variable cross-section, Mechanics Research Communications 35 (2008) 187–192.

[22]    A.A. Mahmoud, A. Ramadan, M.M. Nassar: Free vibration of non-uniform column using DQM, Mechanics Research Communications 38 (2011) 443–448

[23]    C. Shu: Differential quadrature and its application in engineering, Springer, Berlin, (2000).

[24]    C. Shu, BE. Richards: Application of generalized differential quadrature to solve two-dimensional incompressible Navier Stockes equations, International Journal for Numerical Methods in Fluids 15 ( 1992) 791-798.

[25]    R. Bellman, BG. Kashef, J. Casti: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, Journal of Computation Physics 10 (1972) 4&52.

[26]    C.W. Bert, M. Malik: Differential quadrature method in computational mechanics, A review, Applied Mechanics Reviews 9 (1996) 1-28.