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ABSTRACT: In the present study, numerical study of Al2O3-water nanofluid flow in different coiled wire inserted tubes are performed 
to investigate the effects of inserting coiled wires in tubes on the fluid dynamic and heat transfer performance ofv nanofluids. The 
numerical simulations of nanofluids are performed using two phase mixture model. The flow regime and the wall boundary conditions 
are assumed to be laminar and constant heat flux respectively. The effects of inserting coiled wires in tubes on different parameters such 
as heat transfer coefficient, pressure drop, temperature distribution, velocity distribution and secondary flows are presented and 
discussed. The results show that using coiled wire in tubes leading to increase in ℎത about 13.44% but increase the Δp about 14.66% with 
respect to the flow without nanofluid and coiled wire. Similarly, using nanofluid leading to increase in ℎത about 5.52% but increase the  
Δp about 8.92%. Finally, using both of the mentioned heat transfer enhancement mechanisms leading to increase in ℎത about 17.51% but 
increase the value of Δp about 22.86%. 
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Introduction 
    Heat Transfer Enhancement (HTE) in the tubes used in 
various industrial applications and consequently reducing 
the volume of industrial equipment is a subject that has 
been investigated by engineers and researchers for many 
years. In general, the heat transfer enhancing methods can 
be divided into active and passive approaches; which the 
passive method, due to its ease of use and lower cost, has 
greatly attracted the attention of the researchers and 
engineers. An important and useful way of passively 
enhancing the amount of heat transfer in tubes is the use of 
a nanofluid instead of base fluid. A nanofluid refers to a 
compound in which solid, and mostly metallic, particles at 
nano sizes (usually less than 100 nm) are added to an 
ordinary fluid and help increase the value of the mixture 
conductivity and thus improve the amount of heat  transfer 
in that fluid. Due to a considerable enhancement of heat 
transfer and a negligible pressure drop achieved by 
nanofluids, relative to base fluids, the use of nanofluids has 
become very commonplace in recent years [1-7]. Das et al. 
[1] experimentally investigated the effects of different 
parameters (e.g., temperature, nanoparticle volume fraction, 
etc.) on the thermal conductivity of nanofluids. They 
ultimately presented a relation for thermal conductivity of 
nanofluids as a function of temperature, nanoparticle 
volume fraction, etc.  
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    In addition to costly experimental studies, the numerical 
simulation of nanofluids using Computational Fluid 
Dynamics (CFD) techniques is another effective approach 
in analyzing the performance of nanofluids [4, 5]. In 
general, for the numerical simulation of nanofluids, there 
are two methods called the single-phase and two-phase, 
with the two-phase method being much more exact [6]. The 
two-phase method itself has different categories, including 
the Eulerian-Eulerian method, mixture method, etc. Using 
the three methods of two-phase Eulerian-Eulerian, two-
phase mixture, and single-phase homogeneous, Lotfi et al. 
[7] simulated the Al2O3-water nanofluid flow in circular 
tubes. By comparing the simulation results with the 
experimental data, they came to the conclusion that the 
two-phase mixture method is the most exact method among 
the existing approaches. In this article also, the two-phase 
mixture method is used for the numerical simulation of 
nanofluid flow in coiled wire inserted tubes. 
    The other method to enhance the heat transfer value is 
using tube inserts like twisted tapes, brushes, and coiled 
wires. Due to low cost and their capability for easy 
installing or removing inside the tubes (for cleaning 
purposes), the coiled wire inserts usage is growing [8]. 
Some researchers have studied heat transfer and pressure 
drop during forced convection in tubes with inserts. 
Salimpour and Gholami [8] used coiled wires to augment 
heat transfer coefficient in condensation of R-404A vapor. 
Kumar et al. [9] studied heat transfer enhancement during 
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 Volume fraction: 
 

)V.()V.( P,drPPmPP    (4)

 
Where Vm is the mass average velocity: 
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    In equation 2, Vdr,k  is the drift velocity for nanoparticles: 
 

mkk,dr VVV   (6)

 
    The slip velocity (relative velocity) is calculated as the 
velocity of nanoparticles relative to the velocity of base 
fluid: 
 

fppf VVV   (7)

 
    The relation between drift velocity and relative velocity 
is as follows: 
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    The relative velocity and drag function are calculated 
using Manninen et al. [17] and Schiller and Naumann [18] 
relations respectively, as follows: 
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The acceleration (a) in equation 9 is 
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Nanofluid mixture properties 
    The mixture properties for Al2O3-water nanofluid are 
calculated based on following expressions: 
 Density [19]: 
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 Specific heat capacity [20]:  
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 Dynamic viscosity [21]:  
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    Where VB and δ are the Brownian motion of 
nanoparticles and the distance between nanoparticles 
respectively and is calculated from: 
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C in equation 14 is defined as: 
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 Thermal conductivity [22]: 
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Where Ref  and Prf  can be expressed as: 
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    Where λf  is the MFP (mean free path) of water molecular 
(λf = 0.17 nm), kB is Boltzmann constant (kB= 1.3807 × 10-23 
J/K) and η can be defined by the following equation: 
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 Thermal expansion coefficient [23]:   
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Boundary conditions 
    For numerical simulation, the equations of previous 
sections should be solved subject to the following 
boundary conditions: 
 Tubes inlet: 
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 Fluid-wall interface: 
 

0VVV z,my,mx,m   

 

(25a)

w
mw n

T
kq




  (25b)

 
 Tubes outlet: Zero gradient is applied to hydrodynamic 

variables and constant gradient is applied to 
temperature [4-5, 24]:  

 
Numerical methods 
    The numerical study is performed using the finite volume 
method. A second order upwind method is used for the 
convective and diffusive terms and the SIMPLE algorithm 

is employed to solve the coupling between the velocity and 
pressure fields.  
    To make sure that the obtained results are independent of 
the size and the number of generated grids, several grids 
with different sizes along the axial, radial and angular 
directions has been tested for each coiled wire inserted 
tube; and it has been attempted to consider for each tube the 
best grid, with the highest accuracy and the lowest 
computation cost.  
    The investigated tubes contain between 2 and 3 million 
elements. Figure 2 shows a sample of grid generation for 
coiled wire inserted tubes.  
 

Fig. 2. The schematic geometry of considered problem 

 
Validations 
    To attain the confidence about the numerical study, it is 
necessary to compare the results with the available data. 
Figure 3 compares the local heat transfer coefficient (h) and 
local friction factor (Cf) for a plain tube without coiled wire 
of present study with the available data of Mirmasoumi and 
Behzadmehr [25] and Shariat et al. [26]. As is evident from 
this figure the present simulations agree well with the 
available data.  
 
RESULTS 
    Numerical simulations of Al2O3-water nanofluid flow are 
performed in different coiled wire inserted tubes to 
investigate the effects of inserting coiled wires in tubes on 
the fluid dynamic and heat transfer performance of 
nanofluids. 
 
Effect of different enhancement mechanism 
    In heat exchangers the heat transfer coefficient and 
pressure drop are two important parameters and should be 
investigated simultaneously [5]. 
    Therefore in the result section,  heat transfer coefficient 
and pressure drop values of two different heat transfer 
enhancement mechanisms namely using nanofluid and 
using coiled wire in tubes are presented and compared with 
each other.  
    As shown in Table 1, using coiled wire in tubes leading 
to increase in ℎത  about 13.44% but increase the Δp about 
14.66% with respect to the flow without nanofluid and 
coiled wire (a plain tube working with base fluid). 
Similarly, using nanofluid leading to increase in ℎത  about 
5.52% but increase the Δp  about 8.92%.  
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of this idea can be compensated with a pressure 
compensation device such as pump. The secondary vectors 
of nanofluid are strengthened due to using coiled wires with 

greater	௉஽ and smaller	௉஽.    
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