Experimental Investigation on the Thermal Conductivity and Viscosity of ZnO Nanofluid and Development of New Correlations

Document Type: Original Research Paper

Authors

Mechanical Engineering Department, University of Babol, Babol, I.R. Iran

Abstract

In this paper, the measurement of the viscosity of ZnO in ethylene glycol, propylene glycol, mixture of ethylene glycol and water (60:40 by weight), and a mixture of propylene glycol and water (60:40 by weight) and the thermal conductivity in ethylene glycol and propylene glycol as base fluids in the range of temperature from 25 ºC to 60 ºC are investigated. The results indicate that as the temperature increase the viscosity of nanofluid decrease and the thermal conductivity of both base fluid and nanofluid increase. Several existing models for thermal conductivity and viscosity are compared with the experimental data, and they do not demonstrate good comparison agreement. Finally, some new models for predicting the effective viscosity and thermal conductivity are proposed. Furthermore, the viscosity of the base fluid affects the thermal conductivity variation of the nanofluids. The results indicate that the largest enhancements in thermal conductivity are 15% and 9% for EG and PG as base fluids, respectively.

Keywords


[1]  M. Chandrasekar, S. Suresh and A. Chandra Bose:Experimental investigations and  theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, J. of Experimental Thermal and Fluid Science 34(2010) 210–216.

[2]  W. Duangthongsuk, S. Wongwises: Measure- ment of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids, J. of Exp. Therm. Fluid Sci, 33(2009) 706–714.

[3]  A. J. Schmidt, M. Chiesa, D. H. Torchinsky, J. A. Johnson, K. A. Nelson and G. Chen: Thermal conductivity of nanoparticle suspensions in insulating media measured with a transient optical grating and a hotwire, J. of Applied Physics 103(2008) 083529-1–083529-5.

[4]  E. Hrishikesh, T. Patel, S. Sundararajan, K. Das: An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids, J. of Nanopart Res 12(2010) 1015–1031.

[5]  S. Ravikanth, D. Vajjha, K. Das: Experimental determination of thermal conductivity of three nanofluids and development of new correlations, J. of Heat and Mass Transfer 52(2009) 4675–4682.

[6]  W. Yu, H. Xie, L. Chen, Y. Li: Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, J. of  Thermochimica Acta 491(2009) 92-96.

[7]  I. Palabiyik, Z. Musina, S. Witharana, Y. Ding: Dispersion stability and thermal conductivity of propylene glycol-based nanofluids, J. of Nanopart Res 13(2011) 5049–5055.

[8]  S. Lee, S.U.S., Choi, S. Li, J.A. Eastman: Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. of Heat Transf 121(1999) 280–288.

[9]  A. Einstein, N.B. Eine, D. Moleküldimensionen, J. of Ann. Phys 324(1906) 289–306.

[10]  H. Brinkman: The viscosity of concentrated suspensions and solutions, J. of Chem. Phys 20 (1952) 571.

[11]  G. Batchelor: The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. of Fluid Mech 83(1977) 97–117.

[12]  J. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford 1881.

[13]  R.L. Hamilton, O.K. Crosser: Thermal conductivity of heterogeneous two-component systems, Ind Eng Chem Fundam 1(1962) 187–191.

[14]  D.A.G. Bruggemen: Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen, J. of Ann. Phys 24(1935) 636–679.

[15]  D. J. Jeffrey, Conduction Through a Random Suspension of Spheres, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 335 (1973) 355–367.

[16]  E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey and Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, J. V. Selinger: Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory, Physical Review E 76(2007) 061203-1–061203-15.

[17]  R.S. Vajjha, D.K. Das, Measurement of thermal conductivity of Al2O3 nanofluid and development of a new correlation, T. (Ed.), Proceedings of 40th Heat Transfer and Fluid Mechanics Institute, Sacramento, Marbach, CA(2008)14.

[18]  J. Koo, C. Kleinstreuer: A new thermal conductivity model for nanofluids, J. of Nanoparticle 6(2004) 577–588.

[19]  M. Moosavi, E.K. Goharshadi, A. Youssefi: Fabrication characterization and measurement of some physicochemical properties of ZnO nanofluids, Int. J. Heat Fluid Flow 31(2010) 599-605.

[20]  M. Kole, T.K. Dey: Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluids, Int. J. Thermal Sciences (2012) 1-10.

[21]   Y. Xuan, Q. Li, W. Hu: Aggregation structure and thermal conductivity of nanofluids, J. of AIChE, 49(2003) 1038–1043.

[22]  D. Lee: Thermophysical properties of interfacial layer in nanofluids, Langmuir 23(2007) 6011–6018.

[23]  Y. Feng, Y. Boming, P. Xu, M. Zou: The effective thermal conductivity of nanofluids based on nanolayer and aggregation of nanoparticles, J. Phys. D: Appl. Phys 40(2007) 3164-3171.

[24]  K. Leong, C. Yang, and S. M. S. Murshed: A Model for the Thermal Conductivity of Nanofluids-The Effect of Interfacial Layer, Journal of Nanoparticle Research 8(2006) 245–254.