Gas Mixing Simulation in a T-Shape Micro Channel Using The DSMC Method

Document Type: Original Research Paper


Mechanical Engineering Department, Iran University of Science and Technology, Narmak, Tehran, I.R. Iran


Gas mixing in a T-shape micro mixer has been simulated using the Direct Simulation Monte Carlo (DSMC) method. It is considered that the adequate mixing occurs when the mass composition of the species, CO or N2, deviates below 1 % from their equilibrium composition. The mixing coefficient is defined as the ratio of the mixing length to the main channel’s height. As the inlet Kn increases, while the diffusion of the molecules behaves more active, the mixing coefficient decreases. Furthermore, increasing the inlet pressure will cause the mixing length to increase, since the convection effect of the gas stream is more pronounced compared with the diffusion effect. Increasing the gas flow temperature or the wall temperature can enhance the mixing performance, while the effect of increasing the wall temperature is more significant. Walls with diffuse reflectors show more enhancement in mixing coefficient compared with the specular reflectors.


[1]  R. Bacon,Growth, Structure, and Properties of Graphite Whiskers, Appl. Phys. Lett. 31(2) (1960) 283-290.

[2]  A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Crystal Growth 32(3) (1976) 335-349.

[3]  S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

[4]  Y.X. Liang, T.H. Wang, A double-walled carbon nanotube field-effect transistor using the inner  shell as its gate, Physica E 23 (2004) 232-236.

[5]  C. Klinke, A. Afzali, Interaction of solid organic acids with carbon nanotube field effect transistors, Chemical Physics Letters 430 (2006) 75-79.

[6]  T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes Nature 391(1998) 62–64.

[7]  M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes,Nature 381 (1996) 678-680.

[8]  S.J. Tans, R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature 393 (1998) 49-52.

[9]  J.M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, Carbon nanotube films as electron field emitters, Carbon 40 (2002) 1715-1728.

[10]  J. Suehiro, G. Zhou, H. Imakiire, W. Ding, M. Hara, Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement, Sensors and Actuators B 108 (2005) 398-403.

[11]  A. Thess et al., Crystalline Ropes of Metallic Carbon Nanotubes, Science 273, (1996), 483-487.

[12]  R. Andrews, D. Jacques, A. M. Roa, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey and J. Chen, `Continuous Production of Aligned Nanotubes: a Step Closer to Commercial Realization’, Chem. Phys. Lett. 303 (1999) 467-474.

[13]  B.C. Liu, S.C. Lyu, S.I. Jung, H.K. Kang, C.-W. Yang, Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst, Chemical Physics Letters 383 (2004) 104-108.

[14]  Y.S. Cho, G. Seok Choi, G. S. Hong, D. Kim, Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition , Journal of Crystal Growth, 243 (2002) 224-229.

[15]  W. W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, Tye Ching-Thian, The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesized by the chemical vapour decomposition, Physica  E 43 (2011) 1535-1542.

[16]  A. C. Lysaght, W. K. S. Chiu,Modeling of the carbon nanotube chemical vapor deposition process using methane and acetylene precursor gases Nanotechnology,19(16) (2008) 165607-165614.

[17]  L. Pan, Y. Nakayama, H. Ma, Modelling the growth of carbon nanotubes produced by chemical vapor deposition, Carbon 49 (2011) 854-861.

[18]  B. Zahed, T. Fanaei S., H. Ateshi, Numerical analysis of inlet gas-mixture flow rate effects on carbon nanotube growth rate, Transport Phenomena in Nano and Micro Scales 1 (2013) 38-45 .

[19]  B. Zahed, T. Fanaei S., A.Behzadmehr, H. Atashi, Numerical Study of Furnace Temperature and Inlet Hydrocarbon Concentration Effect on Carbon Nanotube Growth Rate, International J. of Bio-inorganic hybrid nanomaterials 2(1) (2013) 329-336

[20]  M. Grujicic, G. Cao, B. Gersten, Reactor length-scale modeling of chemical vapor deposition of carbon nanotubes, J. Mater. Sci. 38(8) (2003) 1819–30.

[21]  H. Endo, K. Kuwana, K. Saito, D. Qian, R. Andrews, E.A. Grulke, CFD predictionof carbon nanotube production rate in a CVDreactor, Chem.Phys. Lett. 387 (2004) 307–311.

[22]  K. Kuwana, K. Saito, Modeling CVD synthesis of carbon nanotubes: nanoparticle formation from ferrocene, Carbon 43(10) (2005) 2088–95.

[23]  A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N. Ivanov, G. Eres, In situ measurements andmodeling of carbon nanotube array growth kinetics during chemical vapor deposition, Appl. Phys. A 81(2) (2005) 223–40.

[24]  Chris R. Kleijn, C. Werner, Modeling of chemical vapor deposition of tungsten films, Vol 2, Birkhauser, Berlin, 1993.

[25]  J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology, Prentice Hall Inc., NewJersy, 2000.