Numerical Study of Operating Pressure Effect on Carbon Nanotube Growth Rate and Length Uniformity

Document Type: Original Research Paper

Authors

1 Mechanical Engineering Department, University of Sistan and Baluchestan, Zahedan, I.R. Iran

2 Electrical and Electronic Department, University of Sistan and Baluchestan, Zahedan, I.R.Iran

3 Chemical Engineering Department, University of Sistan and Baluchestan, Zahedan, I.R. Iran

Abstract

Chemical Vapor Deposition (CVD) is one of the most popular methods for producing Carbon Nanotubes (CNTs). The growth rate of CNTs based on CVD technique is investigated by using a numerical model based on finite volume method. Inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as carrier gas enters into a horizontal CVD reactor at atmospheric pressure. In this article the operating pressure variations are studied as the effective parameter on CNT growth rate and length uniformity.

Keywords


[1] R. Bacon, Growth, Structure, and Properties of Graphite Whiskers, Appl. Phys. Lett. 31(2) (1960) 283-290.

[2] A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Crystal Growth 32 (3) (1976) 335-349.

[3] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

[4] Y.X. Liang, T.H. Wang, A double-walled carbon nanotube field-effect transistor using the inner shell as its gate, Physica E 23 (2004) 232-236.

[5] C. Klinke, A. Afzali, Interaction of solid organic acids with carbon nanotube field effect transistors, Chemical Physics Letters 430 (2006) 75-79.

[6] T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes Nature 391(1998) 62–64.

[7] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381 (1996) 678-680.

[8] S.J. Tans, R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature 393 (1998) 49-52.

[9] J.M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, Carbon nanotube films as electron field emitters, Carbon 40 (2002) 1715-1728.

[10] J. Suehiro, G. Zhou, H. Imakiire, W. Ding, M. Hara, Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement, Sensors and Actuators B 108 (2005) 398-403.

[11] A. Thess et al., Crystalline Ropes of Metallic Carbon Nanotubes, Science 273, (1996), 483-487.

[12] R. Andrews, D. Jacques, A. M. Roa, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey and J. Chen, `Continuous Production of Aligned Nanotubes: a Step Closer to Commercial Realization’, Chem. Phys. Lett. 303 (1999) 467-474.

[13] B.C. Liu, S.C. Lyu, S.I. Jung, H.K. Kang, C.-W. Yang, Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst, Chemical Physics Letters 383 (2004) 104-108.

[14] Y.S. Cho, G. Seok Choi, G. S. Hong, D. Kim, Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition , Journal of Crystal Growth, 243 (2002) 224-229.

[15] W. W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, Tye Ching-Thian, The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesized by the chemical vapour decomposition, Physica E 43 (2011) 1535-1542.

[16] A. C. Lysaght, W. K. S. Chiu, Modeling of the carbon nanotube chemical vapor deposition process using methane and acetylene precursor gases Nanotechnology,19(16) (2008) 165607-165614.

[17] L. Pan, Y. Nakayama, H. Ma, Modelling the growth of carbon nanotubes produced by chemical vapor deposition, Carbon 49 (2011) 854-861.

[18] B. Zahed, T. Fanaei S., H. Ateshi, Numerical analysis of inlet gas-mixture flow rate effects on carbon nanotube growth rate, Transport Phenomena in Nano and Micro Scales 1 (2013) 38-45 .

[19] B. Zahed, T. Fanaei S., A.Behzadmehr, H. Atashi, Numerical Study of Furnace Temperature and Inlet Hydrocarbon Concentration Effect on Carbon Nanotube Growth Rate, International J. of Bio-inorganic hybrid nanomaterials 2(1) (2013) 329-336

[20] M. Grujicic, G. Cao, B. Gersten, Reactor length-scale modeling of chemical vapor deposition of carbon nanotubes, J. Mater. Sci. 38(8) (2003) 1819–30.

[21] H. Endo, K. Kuwana, K. Saito, D. Qian, R. Andrews, E.A. Grulke, CFD prediction of carbon nanotube production rate in a CVD reactor, Chem.Phys. Lett. 387 (2004) 307–311.

[22] K. Kuwana, K. Saito, Modeling CVD synthesis of carbon nanotubes: nanoparticle formation from ferrocene, Carbon 43(10) (2005) 2088–95.

[23] A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N. Ivanov, G. Eres, In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition, Appl. Phys. A 81(2) (2005) 223–40.

[24] Chris R. Kleijn, C. Werner, Modeling of chemical vapor deposition of tungsten films, Vol 2, Birkhauser, Berlin, 1993.

[25] J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology, Prentice Hall Inc., NewJersy, 2000.