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Abstract 
 

In this study, the natural convection heat transfer of variable 

properties Al2O3-EG-water nanofluid in a differentially heated 

rectangular cavity has been investigated numerically. The governing 

equations, for a Newtonian fluid, have been solved numerically with 

a finite volume approach. The influences of the pertinent parameters 

such as Ra in the range of 10
3
-10

7
 and volume fraction of 

nanoparticles from 0 to 0.04 on heat transfer characteristics have 

been studied. The results verified by making overall comparison with 

some existing experimental results have shown that for Ra=10
3
, for 

which conduction heat transfer is dominant, the average Nusselt 

number increases as volume fraction of nanoparticles increases, but 

for higher Ra numbers in contradiction with the constant properties 

cases it decreases. This reduction, which is associated with increased 

viscosity, is more severe at Ra of 10
4
 compared to higher Ra 

numbers such that the least deterioration in heat transfer occurs for 

Ra=10
7
. This is due to the fact that as Ra increases, the Brownian 

motion enhances; thus conductivity improves and becomes more 

important than viscosity increase. An scale analysis, performed to 

clarify the contradictory reports in the literature on the natural 

convection heat transfer enhancement or deterioration of nanofluids, 

showed that different kinds of evaluating the base fluid Rayleigh 

number has led to such a difference. 

 

 

1. Introduction 
 

….An innovative technique to enhance heat transfer is 

using nano-scale particles in the base fluid. During the 

two last decades nanofluids, which are engineered  

colloids composed of nanometer-sized particles 
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suspended in traditional heat transfer fluids, have been 

studied extensively. Remarkable increase for thermal 

conductivity of nanofluids can be achieved even at 

low volume fraction of nanoparticles. This is why 

nanofluids have attracted the attention of the heat 

transfer community. Experimental and numerical 

results show that, in forced convection and for a given 

Reynolds number, the convective heat transfer 

coefficient increases by increasing the nanoparticles 
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volume fraction [1-4]. However, enhancement of 
natural convection heat transfer by using a nanofluid 
is still controversial. Examples of the controversial 
results are those reported by Khanafer et al. [5]. They 
were among the first investigators to conduct a 

numerical study of the heat transfer enhancement in a 
two-dimensional enclosure utilizing nanofluids for 
various pertinent parameters. They tested different 
models for nanofluid density, viscosity and thermal 

 
 Nomenclature   
   Greek Symbols 
cP specific heat at constant pressure  

(J kg-1 K-1) 
 thermal diffusivity (m2 s-1) 

d diameter (m)       thermal expansion coefficient (K-1) 
g gravitational acceleration (m s-2)  dimensionless temperature 
h heat transfer coefficient (W m-2 K-1)   Boltzmann constant, 1.3806503×10-23, 

 (J K-1) 
H height of the cavity (m)  viscosity (Pa s) 
k thermal conductivity (W m-1 K-1)   Ethylene Glycol volumetric concentration 
L length of the cavity (m)  density (kg m-3) 

Nu local Nusselt number  volume fraction of nanoparticles 
Nuavg average Nusselt number  stream function 

  
*
avgNu

 
average Nusselt number ratio  Subscripts 

P pressure (Pa) avg average                                                   
Pr Prandtl number C cold                                                         
Ra Rayleigh number EG Ethylene Glycol                                       

T temperature (K) f    Base fluid                                                 
u, v dimensional x and y components of  

velocity (m s-1) 
H   Hot                                                         

x, y dimensional coordinates (m) m  mean                                                        
X, Y dimensionless coordinates nf  Nanofluid                                                  
    t Time (s) o  properties at reference temperature            

           P  nanoparticle                                             
  w  water                                                        

   superscripts 
  * dimensionless properties 

 
 

expansion coefficients. It was found that the 
suspended nanoparticles substantially increase the 
heat transfer rate at any given Grashof number. 
Recently, Lin and Violi [6], Sheikhzadeh et al. [7] as 
well as Jahanshahi et al. [8] showed similar trend. 
Santra et al. [9] studied heat transfer characteristics of 
Cu-water nanofluid in a differentially heated square 
cavity by treating the nanofluid as a non-Newtonian 
fluid and reported decrease in heat transfer by 
increasing the volume fraction of nanoparticles at a 
particular Rayleigh number. Ho et al. [10] reported a 
numerical simulation of natural convection of a 
nanofluid in a square enclosure considering the effects 
due to uncertainties of viscosity and thermal 
conductivity by considering two models for viscosity 

and thermal conductivity. They reported that a 
significant difference between predictions of viscosity 
models leads to contradictory heat transfer efficacy of 
nanofluid; so that the heat transfer across the 
enclosure can be found to be enhanced or deteriorated 
with respect to the base fluid. Moreover Abu-Nada et 
al. [11] demonstrated that the enhancement of heat 
transfer in natural convection depends mainly on 
Rayleigh number. For a certain Rayleigh number, like 
Ra=104, the heat transfer was not sensitive to 
increased volume fraction of nanoparticles, whereas at 
higher Rayleigh numbers an enhancement in heat 
transfer was observed. On the other hand, the 
experimental findings reported by Putra et al. [12] and 
Li and Peterson [13] demonstrated deterioration in 
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heat transfer by increasing the volume fraction of 
nanoparticles. Ho et al. [14] through their experiments 
observed a deterioration in heat transfer for  >0.02, 
but almost 18% enhancement for  =0.001, however, 
they did not give an explanation for such an 
enhancement. Similar observations were reported 
experimentally by Nnanna [15]. His results showed 
that for small volume fractions (0.002 0.02) the 
presence of the nanoparticles does not impede the free 
convective heat transfer, rather it augments the rate of 
heat transfer, but for volume fractions higher than 
0.02, the convective heat transfer coefficient declines 
due to reduction in the Rayleigh number caused by 
increased kinematic viscosity. Khanafer and Vafai 
[16] used the experimental results of Ho et al. [14] to 
explain the heat transfer behavior of Al2O3-water 
nanofluid. According to their findings, higher volume 
fractions of nanoparticles cause an increase in the 
viscous force of the nanofluid and consequently heat 
transfer is suppressed. Also, as the nanoparticles 
diameter increases the ratio of the Rayleigh number of 
nanofluid to that of the base fluid decreases. Although 
Khanafer and Vafai [16] were successful to explain 
some heat transfer behaviors of Al2O3-water 
nanofluid, they mentioned: “Additional theoretical 
and experimental research studies are required to 
clarify the mechanisms responsible for heat transfer 
enhancement in nanofluids.” 
….As for nanofluid thermophysical properties, the 
aforementioned numerical works relied on the models 
not sensitive to the temperature. Recently, Abu-Nada 
and Chamkha [17] studied the natural convection heat 
transfer characteristics in a differentially heated 
enclosure filled with CuO-EG-water nanofluid by 
using different variable thermal conductivity and 
viscosity models. Their results showed deterioration 
of the average Nusselt number as the volume fraction 
of nanoparticles increased depending on the 
combination of CuO-EG-water thermal conductivity 
and viscosity models employed for Ra=104 and 105. 
Moreover, in another study Abu-Nada et al. [18] 
investigated the role of variable properties of Al2O3–
water and CuO–water nanofluids in differentially 
heated enclosures and found that variation of 
properties play a major role on the heat transfer rate. 
They considered Ra in the range of 103-105 and for 
Al2O3–water at high Rayleigh numbers reported that 
Nusselt number deteriorated by increasing the volume 
fraction of nanoparticles above 0.05, but at low 
nanoparticles volume fractions a fluctuation in heat 
transfer was registered. However, for CuO–water at 

high Rayleigh numbers a continuous decrease in 
Nusselt number was noticed as the volume fraction of 
nanoparticles increased, but it was not sensitive to the 
volume fraction at low Rayleigh numbers. Recently, 
Sahoo et al. [19] studied the effect of nanoparticles 
volume fraction on nanofluids viscosity under a wide 
range of temperatures, experimentally. The nanofluid 
used in their experiments was a mixture of 60:40 (by 
mass) Ethylene Glycol and water containing Al2O3 
nanoparticles. They inferred that the viscosity drops 
with temperature for different volume fractions of 
nanoparticles. Also Vajjha and Das [20, 21] and 
Vajjha et al. [22] experimentally investigated the 
thermal conductivity and specific heat of nanofluids 
comprised of Al2O3 nanoparticles suspended in a 
60:40 (by mass) EG-water mixture under a wide range 
of temperatures. Therefore, from physical point of 
view the dependence of nanofluid properties on 
temperature and volume fraction of nanoparticles is 
very important and the previous investigations 
designate that it must be taken into account. 
….The present numerical study tries to shed light on 
the reason for existing controversies about the results 
presented in the literature on the natural heat transfer 
behavior of nanofluids. In particular, in [17-18] 
different behaviors have been reported for volume 
fractions less than 0.05 and the explanation presented 
in [18] do not seem satisfactory; hence this matter is 
clarified at this juncture correspondingly. For this 
purpose Al2O3-EG-water nanofluid is used and as for 
its thermophysical properties recent experimental 
correlations reported in [19-22] for nanoparticles 
diameter of 44 nm are used. Also unlike [18], the heat 
transfer characteristics are evaluated for a wider range 
of Rayleigh numbers from 103 up to 107 with volume 
fractions of nanoparticles from 0.0 to 0.04. 
Furthermore, for justification of the new findings a 
scale analysis is performed also the results are 
compared with the cases in which constant properties 
for nanofluid have been employed. 

 
2. Problem statement and boundary conditions 

 
     A schematic view of the cavity considered in the 
present study is shown in Fig. 1. The length and the 
height of the cavity are denoted by L and H (L = H), 
respectively. The left vertical wall of the cavity is 
kept at a temperature (TH) higher than the right 
constant cold wall temperature (TC). 
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   * * Pro
P

UV VV
X Y Y X

            
 ቀߤ∗ డ௏డ௫ቁ + ଴ݎ݌ డడ௬ ቀߤ∗ డ௏డ௬ቁ +ܴܽ. (9)      (∗ߚ∗ߩ)ߠ଴ݎ݌

   
*

* *
*
p

k
U V

X Y X Xc

    
        

   + డడ௬ (௞∗௖೛∗ డఏడ௬) 

    (10)

 
where the Rayleigh and Prandtl are: 
 

,

3
, ,

, , ,

( )
Pr ,   f of o p f o H C

o
f o f o f o

c g L T T
Ra

k


 
 

 
 

      (11)

 
The boundary conditions in the dimensionless form 
are: 
 

0      0 1      0,1 U V at X and Y
Y


     




 
  (12-a)

0, 1     0      0 1U V at X and Y        (12-b)
0, 0     1      0 1U V at X and Y        (12-c)

 
The convective heat transfer coefficient on any y at 
the hot wall is: 
 

0
nf

x

T
h k

x 


 

  
     (13)

 
and the local Nusselt number is: 
 

f

hL
Nu

k


 
      (14)

 
Substituting Eq. (13) into Eq. (14) and using the 
dimensionless quantities, the local Nusselt number 
along the left wall becomes: 
 

,
0

nf

f o
X

k
Nu

k X


  
     



 

     (15)

 

where knf in constant properties and in variable 
properties models are evaluated using Eq. (22) and 
Eq. (25), respectively. The average Nusselt number 
on the hot wall is: 
 

1

0

avgNu Nu dY 
 

  (16)

 
And the average Nusselt number ratio is defined as: 
 

* ,

,

avg nf
avg

avg f

Nu
Nu Nu

 
      (17)

 
4. Thermophysical properties of nanofluids 
 

The aim of this work is examination of heat 
transfer characteristics of the Al2O3-EG-water 
nanofluid using temperature dependent models for the 
properties. However, to show the importance of 
properties variations the results are compared with 
those of constant properties models. In this section 
both variable and constant properties models used in 
this study are introduced. 

 
4.1. Constant properties models 
 

The effective density of nanofluids, validated 
experimentally for Al2O3-water nanofluid by Pak and 
Cho [23], is given by: 

 

nf P f(1 )       (18)
 
The specific heat and thermal expansion coefficient 
of nanofluids proposed by [5, 24], respectively, are: 
 

 ( ) 1 ( ) ( )p nf p f p pc c c    
 

 
(19)

  ( ) 1 ( )nf pf
    

 
(20)

 
The nanofluid viscosity is estimated by the following 
correlation developed by Brinkman [25] as: 
 

 2.5
1

f
nf 




   (21)

 
For thermal conductivity of nanofluids numerous 
theoretical studies have been conducted dating back 



Khorasanizadeh et al./ TPNMS 2 (2014) 48-64 
 

53 
 

to the classical work of Maxwell. Maxwell’s model 
states that the effective thermal conductivity of a 
nanofluid depends on the thermal conductivity of 
both nanoparticles and the base fluid as well as the 
volume fraction of nanoparticles, irrespective of the 
nanoparticles mean diameter. Accordingly, the 
effective thermal conductivity, given by Wang et al. 
[26], is: 
 

,

2 2 ( )

2 ( )
p f f p

nf Maxwell f
p f f p

k k k k
k k

k k k k

   


   
 

   (22)

 
For the mixture of EG and water: 
 

f EG w(1 )            (23-a)

 f EG w
( ) ( ) (1 )     

      (23-b)

 
Where ɳ is the fluid thermophysical property and 

ξ is Ethylene Glycol volumetric concentration in the 
mixture, which is equal to 0.578 for 60:40 EG/w by 
mass mixture [27]. The properties of nanoparticles, 
Ethylene Glycol and water at reference temperature 
are presented in Table 1. 

 
Table 1  
Gas phase and Surface Reactions 

Properties Al2O3 EG Water 

 (kg m-3) 
3970 1114.4 997 

cp (J kg-1 K-1) 765 2415 4179 
410 (Pa s) - 157 8.55 

510  (K-1) 0.846 65 27.61 

k(W m-1 K-1) 36 0.252 0.613 

 
4.2. Variable properties models 
 
    As described by Vajjha et al. [22], the best 
correlation for the density of Al2O3 nanoparticles with 
nanoparticle mean diameter of 44 nm dispersed in 
60:40 EG/w as the base fluid is presented by Eq. (18). 
In this correlation, the base fluid variable density 
proposed by [29] is used as: 
 

3 22.43 10 0.96216 1009.9261f T T   
 

   (24)

 

The specific heat of Al2O3-EG-w nanofluid with 
nanoparticle mean diameter of 44 nm for 60:40 EG/w 
given by Vajjha and Das [21] is: 

,4

, ,

,

8.911 10 0.5179

0.425

p p

p nf p f

p f

c
T

c c

c

 


 

 

   (25)

 
where the base fluid variable specific heat proposed 
by [29] is: 
 

, 4.2483 1882.4p fc T 
 (26)

 
Sahoo et al. [19] measured the viscosity of 

Al2O3-EG-w nanofluid with nanoparticle mean 
diameter of 44 nm for volume fractions up to 0.1. 
For the temperature range of 273 to 363 K, they 
proposed: 

 

7 2903
2.392 10 exp 12.65nf T

      
 


 

(27)

 
Vajjha and Das [20] measured the thermal 

conductivity of Al2O3-EG-w nanofluid with 
nanoparticle mean diameter of 44 nm for 60:40 
EG/w. They developed a thermal conductivity model 
as a two-term function in the temperature range of 
298 to 363 K as: 

 

 
 

4
2 2

5 10
2 2

p f f p

nf f

p f f p

k k k k
k k

k k k k

   
  

   ߩ∅ܤ௙ܿ௣,௙ට ௄்ఘ೛ௗ೛ ݂(ܶ, ∅)      (28-a)

 
where f(T,ߔ ) is: 
 

   2 3, 2.8217 10 3.917 10
T

f T
T

      ்்బ + (−3.0669 + 10ିଶߔ − 3.91123 ×10ିଶଷ) (28-b)

B is fraction of the liquid volume which travels 
with a particle and for nanofluid comprised of Al2O3 
nanoparticles is [20]: 

 
1.073048.4407(100 )B    (28-c)
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The first term in Eq. (28-a) is called the static part 
and the second term takes into account the effect of 
particle size, particle volume fraction, temperature 
and properties of the base fluid as well as the 
nanoparticles subjected to Brownian motion. 

To the best of our knowledge, there is no 
correlation for thermal expansion coefficient of 
Al2O3-EG-w as a function of temperature; thus in this 
study Eq. (20) has been used as a base to obtain a 
variable thermal expansion coefficient. For this 
purpose, the values of density and thermal expansion 
coefficient of EG and water taken from [28], within 
the temperature range of 290-320 K, have been curve 
fitted firstly. The results are: 

 
4 3 24.667 10 0.4515 144.1EG T T T    1.408 × 10ସ             

( ܴଶ = 1)             
 

     (29)

4
EG 6.5 10   

 
     (30)

2
w 0.003404 1.726 785.1T T   (ܴଶ = 0.997) 

 

     (31)

2 6
w ( 0.06107 45.9 7999) 10T T     (ܴଶ = 1) 

 

       (32) 

 
Then the thermal expansion coefficient of the 

EG/w mixture has been obtained using Eq. (23-b) and 
finally by substituting the results in Eq. (20) the 
thermal expansion coefficient of nanofluid has been 
obtained. 
The other properties of the base fluid are [29]: 
 

7 2664
5.55 10 expf T

     
 


 

   (33)

6 2 33.196 10 2.512 10 0.1054fk T T     
 

   (34)

 
5. Numerical procedure 

 
….The governing equations and the associated 
boundary conditions have been solved numerically 
using the finite volume method. The diffusion terms 
in the governing equations have been discretized 
using a second-order central difference scheme; while 

a hybrid scheme (a combination of the central 
difference scheme and the upwind scheme) has been 
employed to approximate the convection terms. A 
staggered grid system together with the SIMPLER 
algorithm has been adopted to solve for the pressure 
and the velocity components. The coupled set of 
discretized equations has been solved iteratively 
using the TDMA method [30]. To obtain converged 
solution an under-relaxation scheme has been 
employed. 

 
5.1. Benchmarking of the code 

 
In order to validate the numerical procedure and 

as a test case, the geometry and conditions of 
Jahanshahi et al. [8] have been considered. The test 
case is the natural convection of SiO2-water nanofluid 
in a two-dimensional square enclosure. Table 2 shows 
the average Nusselt number on the hot wall for 
Ra=105 obtained by the results of the computer code 
of this study compared with those of Jahanshahi et al. 
[8], both obtained using experimentally measured 
variable thermal conductivity. It should be noted that 
the values for average Nusselt numbers have been 
picked from a curve in [8] with ultimate care. As 
seen, for every volume fraction of nanoparticles good 
agreement exists between the average Nusselt number 
obtained in this study and that of Jahanshahi et al. [8]. 

 
Table 2 
 Nuavg for Ra=105; comparison with [8] for validating the 
numerical results. 

  
Nuavg (Jahanshahi et 

al. [8]) 

Nuavg 
(Present 
study)

0.01 4.83  4.82399 
0.02 4.91 4.91729 
0.03 5.05 5.02668 
0.04 5.15 5.15333 

 
5.2. Grid independency study 
 

In order to use a proper grid in the numerical 
simulations, a grid independency study has been 
undertaken first. Seven different uniform grids of 
41×41, 61×61, 81×81, 101×101, 121×121, 141×141 
and 161×161 have been employed to simulate the 
natural convection of variable properties Al2O3-EG-w 
in the cavity for 0.03=ߔ and Ra=105. The variation of 
the average Nusselt number with the number of grids 
is presented in Table 3. As it can be observed, 
uniform grid of 141×141 is sufficiently fine to ensure 
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grid independent solutions. Hence, this grid has been 
used to perform all of the subsequent simulations. 

 
6. Results and discussion 
 
….In this section, a representative set of graphical 
results are presented to illustrate the influence of 
different parameters on natural heat transfer 
characteristics of the mixture of 60:40 EG-w 
containing Al2O3 nanoparticles. The right wall has 
been maintained at the constant temperature of 298 
K, whereas the temperature of the left wall has been 
changed dependent on Rayleigh number. In 
simulations for the variable properties cases, all of the 
thermophysical properties of nanofluid and base fluid 
have been considered variable. However, the 
Rayleigh number is based on the properties at the 
mean of the hot and cold temperatures. 

In natural convection problems, when the density 
is considered variable with temperature, studying the 
term ߰ߩ which is called the flow strength is worthy 
not the streamlines. The flow strength depends on 
variation of both ߩ andψ; thus better presents the 
effects of favoring and opposing forces. However, in 
[17-18] in which density has been considered 
constant the streamlines have been presented. In Fig. 
2 the contour maps of ߰ have been presented for 
Al2O3-EG-water nanofluid and the base fluid for 
=0.001 and 0.04 and Ra=103, 105 and 107. The flow is 
characterized by one rotating cell within the 
enclosure in all of the cases.  

It is evident that increasing Rayleigh number 
results in higher intensity of the flow strength. This in 
turn strengthens the natural convection and improves 
the heat transfer rate. The presence of nanoparticles 
with 0.001=ߔ has insignificant effect on the flow 
strength at Ra=103 and 105, but as Ra increases to 107 
its effects become evident. However, the change of 
the maximum flow strength become more evident as ߔ increases to 0.04, such that at Ra=103 the flow 
strength decreases but at Ra=105 and 107 it adversely 
increases.  

The nanofluid density increases with increase in 
volume fraction of nanoparticles but decreases with 
increase in temperature. On the other hand, due to 
viscosity increase, the stream function decreases with 
increased volume fraction of nanoparticles but it 
increases with temperature increase. At Ra=103, for 
which convection is very weak,   decreases sharply 
as   increases, however at Ra=105 and 107 the 

relative effect of density increase with   increase is 
greater than decrease of   with   increase; thus the 
maximum flow strength increases. As was discussed 
here,   and   show different responses to change of 
temperature and volume fraction of nanoparticles; 
this was not possible to be observed in [17-18]. 

Fig. 3 presents the y-velocity component for 
Al2O3-EG-water nanofluid at mid-section of the 
square cavity (y=0.5) for Ra=103 and Ra=105. 
Increasing the volume fraction of nanoparticles 
increases the effective viscosity of nanofluid and 
tends to slow down the movement of the fluid in the 
cavity; hence the magnitude of the vertical velocity 
decreases as  increases. 

To illustrate how the thermal boundary layer 
thickness adjacent to the hot wall is influenced by the 
addition of nanoparticles, the isotherms for the base 
fluid as well as nanofluid with 0.001=ߔ and 0.04 are 
presented in Fig. 4.  
For 0.001=ߔ there is not any noticeable change for 
the isotherms as well as thermal boundary layer close 
to the hot wall for nanofluid compared with the base 
fluid. However, as it increases to 0.04 the isotherms 
and the thermal boundary layer thickness show their 
sensitivity to the volume fraction of nanoparticles. 
This behavior is related to the increased viscosity as 
volume fraction of nanoparticles increases. The 
growth in thermal boundary layer thickness at Ra=105 
and 107 is responsible for the lesser temperature 
gradient at the hot wall which lowers the rate of the 
heat transfer accordingly. However, for Ra=103 the 
volume fraction increase causes the thermal boundary 
layer thickness to increase at y<½ and to decrease at 
y>½, hence isotherms start to straighten up near the 
hot wall. In fact, at 0.04=ߔ the isotherms become 
closer to the hot wall for y>½, but they spread away 
from it and exhibit a trend almost similar to 
conduction in solids for y<½. This behavior leads to 
the heat transfer enhancement for y>½ and its decline 
for y<½. 

Fig. 5a-c show the variation of the local Nusselt 
number (Nu) along the hot wall for various values of 
nanoparticles volume fractions (0   0.04) and 
Ra=103, 105 and 107. It is seen that for Ra=105 and 
107 increasing the volume fraction of nanoparticles 
leads to reduction of Nu. This behavior, which was 
discussed earlier, contradicts the results of some 
previous studies [5-8] for constant properties 
nanofluids, but agrees with variable properties results 
of Abu-Nada and Chamkha [17] for CuO-EG-water  
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Fig. 4. Isotherms for the base fluid (solid lines) and the nanofluid (dashed lines) for (a) 0.001=ߔ (b) 0.04=ߔ. 

 
nanofluid and Abu-Nada et al. [18] for CuO-water 
nanofluid. However, for Ra=103 increasing the 
volume fraction of nanoparticles results in reduction  
of local Nusselt number at y<½ but enhancement of 
Nu at y>½. 

Fig. 6a and 6b show the average Nusselt number 
and the Nusselt number ratio on the hot wall, 
respectively. For every volume fraction, Nuavg 
increases with increasing Ra. For instance for 0.04=ߔ 
the values of Nuavg at Ra=105 and 107 are 3.6 and 15.3 
times greater than that of Ra=103, respectively. 
However, as ߔ increases Nuavg decreases for Ra 104 
but increases for Ra=103. Similarly at Ra=103, for 
which conduction heat transfer is dominant, the 
Nusselt number ratio on the hot wall has increased 
with increased ߔ but for Ra=104 it has decreased with 
increasedߔ. However, for Ra=107 compared to 
Ra=104, 105 and 106 the least deterioration in Nusselt 
number ratio has occurred as ߔ has increased. As was 
presented in introduction, Abu-Nada et al [18] 
noticed different heat transfer behavior for Al2O3-
water nanofluid. This may be due to the fact that	ߩ ,ߚ	and cP were considered constant in their study. 

Natural convection heat transfer is affected by 
change of Ra as well as nanofluid properties,  

 
specifically nanofluid viscosity and thermal 
conductivity. In general, adding nanoparticles to the 
base fluid has two opposite effects on heat transfer: a  
positive effect due to presence of high thermal 
conductivity nanoparticles and an adverse effect 
promoted by increased effective viscosity of 
nanofluid. Enhancement of thermal conductivity of 
the nanofluid at Ra=107 compared to Ra=103, shown 
in Fig. 7, is related to increased Brownian motion. 
However, as Ra increases convection enhances and 
the relative effect of viscosity increase with ߔ 
becomes less than that of conductivity enhancement; 
thus the relative decrease of Nuavg decreases with 
increased Ra. This is why the least deterioration of 
Nuavg occurs at Ra=107. 

In [17-18] the reason for observed enhancement 
or deterioration of Nuavg has not been explained, 
instead some general explanations have been 
presented. Nevertheless, this needs a quantitative 
analysis which is performed here. According to 
equation (15), the Nusselt number is influenced by 
temperature gradient at the left hot wall as well as 
thermal conductivity ratio. As shown in Fig. 8a, at 
Ra=103, for which conduction is dominant, as ߔ 
increases the effect of increased thermal conductivity 
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