Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation

Document Type: Original Research Paper


Department of Physics, University of Sistan and Baluchestan, Zahedan, Iran


Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hundreds of picoseconds. Following of absorption of light energy by metal-dielectric nanocomposite material, metal nanoparticles are heated. Then, the thermal energy is transferred to the host medium through particle-dielectric interface. On the one hand, nonlinear optical properties of such materials depend on their thermal responses to laser pulse, and on the other hand different parameters, such as pulse laser and medium thermodynamic characterizes, govern on the thermal responses of medium to laser pulse. Here, influence of thermal resistance at particle-surrounding medium interface on thermal response of such material under ultrashort pulse laser excitation is investigated. For this, we used three temperature model based on energy exchange between different bodies of medium. The results show that the interface thermal resistance plays a crucial role on nanoparticle cooling dynamics, so that the relaxation characterized time increases by increasing of interface thermal resistance.


[1] B. Li, Now you hear me, now you don’t, Naturematerials, 9 (2010) 962-963.

[2] N. Li, J. Ren, L. Wang, G. Zhang, P. Hanggi and B.Li, Phononics: Manipulating heat flow withelectronic analogs and beyond, Rev. Mod. Phys. 84(2012) 1045-1066.

[3] K.P rashant Jain, Xiaohua Hunng, I. El-Sayed, and M.El-Sayed, Noble Metals on the Nanoscale: Opticaland Photothermal Properties and Some Applicationsin Imaging, Sensing, Biology, and Medicine,Accounts Of Chemical Research,41 (2008) 1578-1586.

[4] T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber,Atomic structure and electronic properties ofsingle-walled carbon nanotubes, Nature 391(1998) 62–64.

[5] M. Grujicic, G. Cao, B. Gersten, Reactor lengthscalemodeling of chemical vapor deposition ofcarbon nanotubes, J. Mater. Sci. 38(8) (2003)1819–30.

[6] H. Endo, K. Kuwana, K. Saito, D. Qian, R. AndrewsE.A. Grulke, CFD prediction of carbon nanotubeproduction rate in a CVD reactor, Chem.Phys. Lett.387 (2004) 307–311.

[7] K. Kuwana, K. Saito, Modeling CVD synthesis ofcarbon nanotubes: nanoparticle formation fromferrocene, Carbon 43(10) (2005) 2088–95.

[8] A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N.Ivanov, G. Eres, In situ measurements andmodeling of carbon nanotube array growthkinetics during chemical vapor deposition, Appl.Phys. A 81(2) (2005) 223–40.

[9] C.L. Andrew, W.K.S. Chui, Modeling of the carbonnanotube chemical vapor deposition process usingmethane and acetylene precursor gases,Nanotechnology, 19(16) (2008) 165607–14.

[10] L. Pan, Y. Nakayama, H. Ma, Modelling the growthof carbon nanotubes produced by chemical vapordeposition, Carbon 49 (2011) 854-861.

[11] C.L. Yaws, Chemical Properties Handbook,McGraw-Hill,Newyork 1999.

[12] M. Rashidi-Huyeh and B. Palpant, Thermal responseof nanocomposite materials under pulsed laserexcitation, J. Appl. Phys, 96 (2004) 4475-4482.

[13] Yannick Guillet, Majid Rashidi-Huyeh, and BrunoPalpant, Influence of laser pulse characteristics on thehot electron contribution to the third-order nonlinearoptical response of gold nanoparticles, Phys. Rev. B79 (2009) 0454101-9.

[14] Francesco Banfi, Vincent Juvé Damiano Nardi,Stefano Dal Conte, Claudio Giannetti, GabrieleFerrini, Natalia Del Fatti, and Fabrice Vallée,Temperature dependence of the thermal boundaryresistivity of glass-embedded metal nanoparticles,Appl. Phys. Let. 100 (2012) 0119021-3.

[15] Bruno Palpant, Yannick Guillet, Majid Rashidi-Huyeh, and Dominique Prot, Gold nanoparticleassemblies: Thermal behaviour under opticalexcitation, Gold Bulletin 41 (2008) 105-115.

[16] Yannick Guillet, Majid Rashidi-Huyeh, DominiqueProt and Bruno Palpant, Gold nanoparticleassemblies: interplay between thermal effects andoptical response, Gold Bulletin 41, (2008) 341-348.

[17] Mark E. Siemens, Qing Li, Ronggui Yang, Keith A.Nelson, Erik H. Anderson, Margaret M. Murnane &Henry C. Kapteyn, Quasi-ballistic thermal transportfrom nanoscale interfaces observed using ultrafastcoherent soft X-ray beams, Nature Materials 9 (2010)26 – 30.

[18] Vincent Juvé, Mattia Scardamaglia, Paolo Maioli,Aurélien Crut1, Samy Merabia, Laurent Joly, NataliaDel Fatti, and Fabrice Vallée, Cooling dynamics andthermal interface resistance of glass-embedded metalnanoparticles, Phys. Rev. B 80 (2009) 1954061-6.

[19] Orla M. Wilson, Xiaoyuan Hu, David G. Cahill, andPaul V. Braun, Colloidal metal particles as probes ofnanoscale thermal transport in fluids, Phys. Rev. B 66(2002) 2243011-6.

[20] Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, andA. Nakamuka, Ultrafast electron relaxation viabreathing vibration of gold nanocrystals embedded ina dielectric medium, Phys. Rev. B 63 (2001)1043021-5.

[21] David G. Cahill, Wayne K. Ford, Kenneth E.Goodson, Gerald D. Mahan, Arun Majumdar,Humphrey J. Maris, Roberto Merlin, Simon R.Phillpot, Nanoscale thermal transport, J. Appl. Phys.93 (2003) 793-818.

[22] M. Rashidi-Huyeh, S. Volz, and B. Palpant, Non-Fourier heat transport in metal-dielectric core-shellnanoparticles under ultrafast laser pulse excitation,Phys. Rev. B 78 (2008) 1254081-8.